
Artificial Intelligence for Engineering Design, Analysis and 
Manufacturing
http://journals.cambridge.org/AIE

Additional services for Artificial Intelligence for Engineering Design, Analysis 
and Manufacturing:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

RATA.Gesture: A gesture recognizer developed using data mining

Samuel Hsiao­Heng Chang, Rachel Blagojevic and Beryl Plimmer

Artificial Intelligence for Engineering Design, Analysis and Manufacturing / Volume 26 / Special Issue 03 / August 2012, pp 351 ­ 366
DOI: 10.1017/S0890060412000194, Published online: 14 August 2012

Link to this article: http://journals.cambridge.org/abstract_S0890060412000194

How to cite this article:
Samuel Hsiao­Heng Chang, Rachel Blagojevic and Beryl Plimmer (2012). RATA.Gesture: A gesture recognizer developed 
using data mining. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 26, pp 351­366 doi:10.1017/
S0890060412000194

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/AIE, IP address: 130.216.15.64 on 08 Nov 2012



RATA.Gesture: A gesture recognizer developed using
data mining

SAMUEL HSIAO-HENG CHANG, RACHEL BLAGOJEVIC, AND BERYL PLIMMER
Department of Computer Science, University of Auckland, Auckland, New Zealand

(RECEIVED June 30, 2011; ACCEPTED February 13, 2012)

Abstract

Although many approaches to digital ink recognition have been proposed, most lack the flexibility and adaptability to provide
acceptable recognition rates across a variety of problem spaces. This project uses a systematic approach of data mining analysis
to build a gesture recognizer for sketched diagrams. A wide range of algorithms was tested, and those with the best performance
were chosen for further tuning and analysis. Our resulting recognizer, RATA.Gesture, is an ensemble of four algorithms.
We evaluated it against four popular gesture recognizers with three data sets; one of our own and two from other projects.
Except for recognizer–data set pairs (e.g., PaleoSketch recognizer and PaleoSketch data set) the results show that it outperforms
the other recognizers. This demonstrates the potential of this approach to produce flexible and accurate recognizers.

Keywords: Pen-Based Interfaces; Recognition Algorithms; Sketch Recognition; Sketch Tools

1. INTRODUCTION

Accurate recognition of hand-drawn input is one of the unre-
solved fundamental requirements for computer-based sketch
tools to reach their full potential. Many of the existing recog-
nizers work well for the specific context for which they were
designed, but lack flexibility for general use. In this project a
systematic approach is used to examine existing data mining
techniques built within WEKA (Witten & Frank, 2005) to
compose a gesture (single stroke) recognizer for diagram rec-
ognition. Such a recognizer allows accurate stroke recogni-
tion results to be passed to the other parts of the recognition
process such as joining related strokes and deciphering se-
mantics. With this approach we are able to retain accuracy
while increasing the generalizability of the recognizer.

One of the main approaches to ink recognition is to com-
pute features of the ink and use these features to discriminate
between different classes of strokes. Many research projects
use this approach and improve the accuracy by selecting fea-
tures and fixing the threshold of each feature statistically (Pa-
tel et al., 2007) or heuristically (Yu & Cai, 2003). Although this
approach can improve results for a particular context, it is time
consuming and the resulting recognizer is inflexible. These
“hard coded” (Johnson et al., 2009) recognizers require sig-
nificant work to recognize new shapes, because appropriate

ink features and new thresholds need to be found manually.
Because there are essentially an infinite number of gestures,
designing a recognizer for each diagram set is impractical.
An alternative is to support a range of common shape types
to allow more flexibility (Fonseca et al., 2002; Paulson &
Hammond, 2008). However, including shapes that are not re-
quired is likely to reduce accuracy (Fonseca et al., 2002).

Another approach is template matching, where processed in-
put strokes are compared with given templates on the pixel (or
ink data reduced to a set of pixels) to find the similarities (Gross,
1994; Kara & Stahovich, 2004; Wobbrock et al., 2007). New
shapes can be simply added by specifying new templates. Be-
cause this approach relies mainly on the pixel data, it does not
fully exploit the rich temporal data contained in digital ink.

Machine learning techniques that automatically find rela-
tionships between features can result in extensible recogniz-
ers that are capable of utilizing rich feature sets (e.g., Rubine,
1991; Willems et al., 2009). This is a promising approach that
avoids the disadvantages of hard-coded and pattern matching
recognizers. However, there are two major limitations to cur-
rent diagram recognition research using this approach: first,
the number of features used in each project has been limited;
second, there is no guarantee that the machine learning algo-
rithms employed are the best as most projects have focused on
one or two algorithms.

In this project we use WEKA (Witten & Frank, 2005), a
data mining tool that provides many machine learning algo-
rithms to explore the performance of different algorithms

Reprint requests to: Beryl Plimmer, Department of Computer Science,
University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
E-mail: beryl@cs.auckland.ac.nz

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2012), 26, 351–366.
# Cambridge University Press 2012 0890-0604/12 $25.00
doi:10.1017/S0890060412000194

351



using a large set of computable ink features. A set of well per-
forming algorithms was identified, with each one in turn
tuned to their best configuration. From this set, four algo-
rithms have been combined into an ensemble to provide an
accurate trainable recognizer: RATA.Gesture. RATA.Gesture
is an enhanced version of RATA.SSR (Chang et al., 2010).
We have deliberately scoped this project to simple gestures,
ignoring joining and/or splitting which are a usual part of ba-
sic shape recognizers, so that we can accurately measure the
single stroke recognition success rates. Furthermore, although
our focus is diagram recognition, the RATA.Gesture recog-
nizer can also be applied to functional gestures: our evaluation
considers both drawing and functional gestures. For the pur-
poses of this project a single digital ink stroke is both a gesture
and a shape so we use the terms stroke, gesture, and shape in-
terchangeably.

The rest of this paper is organized as follows. Section 2
presents a summary of related literature on diagram ink rec-
ognition. Section 3 presents the methodology used to develop
our recognizer. Following this, Section 4 describes the data
and ink features used in our study. Section 5 provides the de-
tails of our data mining analysis performed to identify the
most suitable algorithms for our diagram recognition prob-
lem. We then present the results of an evaluation of RATA.-
Gesture against four other recognizers in Section 6. Finally
the paper ends with the discussion and conclusions.

2. RELATED WORK

Obtaining information about the digital ink strokes is the key
to recognition; the way this information is deduced decides the
mechanism used in recognizers. Some use similar approaches
to image processing by matching shape templates against in-
put (e.g., Gross, 1994; Kara & Stahovich, 2004; Wobbrock
et al., 2007). Others hard-code the threshold of ink features
for each gesture (Sezgin et al., 2001; Calhoun et al., 2002;
Fonseca et al., 2002; Yu & Cai, 2003). A third group
also uses features, but they combine the features with machine
learning algorithms to train the recognizers (e.g., Rubine,
1991; Fonseca et al., 2002; Hammond et al., 2008).

Template matching approaches are similar to many image
processing techniques: a user creates a number of example
shapes that are used as templates. These templates are con-
structed by standardizing the number of points, rotating to a
standard position, and scaling to a standard size. Data to be
recognized is manipulated using the same process and then
pixel matched to the templates. Examples of recognizers using
this approach are (Gross, 1994; Kara & Stahovich, 2004; Wob-
brock et al., 2007). Although these recognizers are extendable,
they do not utilize the full information of the ink strokes and the
pre-processing limits the range of shapes that can be recog-
nized. For example the rotation makes it difficult to differenti-
ate rectangles from diamonds. Other image-based recognizers
include (Ouyang & Davis, 2009; Fu & Kara, 2011). Reported
recognition rates vary from 87% (Kara & Stahovich, 2004) to
99.02% (Wobbrock et al., 2007).

Both hard-coded and trainable recognizers use computable
features of the ink (such as stroke length and curvature), as
opposed to pixel data used by template matchers. Hardcoded
recognizers (Fonseca et al., 2002) apply fixed thresholds to
the different features to differentiate the classes of interest.
For example, closed shapes such as a circle have the start
and finish points “close together.” The thresholds have
been arrived at either heuristically (Sezgin et al., 2001; Yu
& Cai, 2003) or by statistical methods (Fonseca et al.,
2002; Patel et al., 2007). Although such an approach is effec-
tive in distinguishing lines and arcs in segmentation prob-
lems (Sezgin et al., 2001; Calhoun et al., 2002; Yu & Cai,
2003), they have limited flexibility for application to more
complex recognition tasks. Furthermore, systems built this
way are cost ineffective: a lot of effort is required to extend
the number of supported shapes (Apte et al., 1993; Fonseca
et al., 2002).

Training based approaches support flexibility by convert-
ing ink data to features, and applying machine learning tech-
niques to find relationships (Rubine, 1991; Fonseca et al.,
2002; Hammond et al., 2008). Many different features are re-
ported but few have applied a large number of features, except
(Willems et al., 2009) which has 758 features (although these
are a recombination of a base set of 48 features). The other
part of the training-based approach is the machine learning al-
gorithms employed. Most studies have reported on the use of
one or two algorithms. Reported recognition rates for trainable
recognizers are in the range 95.1% (Fonseca et al., 2002) to
99.2% (Willems et al., 2009). This approach is promising,
yet not fully explored. A similar area, multimedia machine
learning, reports many successful applications. They suggest
the application of rich feature sets (Basili et al., 2004; Vogt
& Andre, 2005) and comparing different algorithms to rank
the effectiveness of each (Connell et al., 2000; LaViola & Ze-
leznik, 2004; Tay, 2008).

Many recognizers have high classification rates reported,
however, results of a comparative evaluation conducted
show that these rates are very hard to replicate (Schmieder
et al., 2009). Schmieder et al. evaluated $1, Rubine, CALI
and PaleoSketch, among other basic shape recognizers, using
two different data sets. These recognizers were unable to
reach the classification rates reported independently. This
suggests a lack of flexibility in such recognizers.

Data mining tools such as WEKA (Witten & Frank, 2005)
and RapidMiner (Mierswa et al., 2006) provide many data
mining algorithms. A large variety of features have been
used in different ink recognition projects, and most are assem-
bled into the feature library in DataManager (Blagojevic
et al., 2008). In this project we combine the feature library
of DataManager with the algorithms in WEKA to identify
the most suitable algorithms for gesture recognition.

3. METHODOLOGY

This section describes the methodology adopted to apply data
mining to digital ink gesture recognition. Data mining re-

S.H.-H. Chang et al.352



quires computable features, data, and algorithms. We describe
our data collection method: we collected data that represented
the diagram domain and construct a data set using a feature
library. The next section outlines the systematic approach
taken to select and tune appropriate algorithms for analysing
the data and find patterns distinguishing gestures using data
mining techniques. Finally, the evaluation method for the
resulting recognizer against others is described.

3.1. Data collection

The first step of this study is to collect training data. There is
no way to collect data that represents the complete hypothesis
space for the diagram domain because it includes an infinite
number of different diagram types and shapes. Instead we
carefully select multiple types of diagrams to capture different
perspectives of the diagram domain.

Our requirements are that the collected diagrams must be
real diagrams that are used in the real world. They must con-
tain a good variety of characteristics and complexity, which is
important for training data mining algorithms well. In addi-
tion, in keeping with the gesture recognition problem, all
shapes that are contained in the diagrams must be drawn
with a single stroke.

Once the targeted diagram types are determined, training
data is collected and labeled. Two methods exist for collect-
ing data; they can either be collected as complete diagrams
(in situ collection) or as isolated shapes (isolated collection).
In situ collection requires the user to plot a whole diagram of
the targeted diagram domain. Isolated collection considers
only the individual shapes. In comparison, isolated collection
is easier: participants only need to know how to plot these
shapes. Furthermore, in situ collection takes more processing
time because the collected data needs to be labeled manually,
whereas in isolated collection, because the shapes are already
separated, this process is not required.

Studies have shown that in situ collection of data can have a
significant positive effect on recognizer accuracy (Schmieder
et al., 2009), especially when user data is included in training
(Field et al., 2009). Therefore, although most of our data are
collected using this method, one set is similar to most other
publically available data set of individual shapes.

Each stroke is manually labeled so that the data mining al-
gorithms can train classifiers based on these classifications.
Ink features are calculated from these labeled strokes using
the DataManager feature library (Blagojevic et al., 2010).
These features provide data mining algorithms with computa-
ble information regarding the characteristics of the stroke to
use for training the classifiers.

3.2. Data mining

Once all features are assembled into a data set they are ready
for data mining. Data mining is the process of using machine
learning algorithms to find patterns in data. These patterns are
used to classify data into the classes of interest, in this case,

into shape classes. We use WEKA (Witten & Frank, 2005),
a data mining tool, to perform our analysis. WEKA has
over 100 machine learning algorithms that can be used for
such an analysis.

Our analysis consists of four steps:

1. algorithm exploration,
2. tuning,
3. feature selection, and
4. 3nsembles.

Although WEKA provides many algorithms, not all of
them are suitable for our data set. In addition, an exhaustive
search of all algorithms and their corresponding parameters
would be impossible given the size of the search space, the
computational resources available, and time required. There-
fore, to identify the most suitable algorithms for the diagram
recognition domain we first explored a large number of algo-
rithms and used a systematic approach to narrow them down
to the best performing algorithms. An algorithm may not be
suitable for many reasons: for example, it may lack accuracy
for digital ink recognition problems due to its simplicity, or it
may be designed to only support nominal attributes when
most of our calculated features are numeric.

The second step of our analysis is to tune the chosen algo-
rithms by experimenting with various parameter settings and
comparing a tuned algorithm to one with default settings. Per-
formance of a classifier can be judged by three aspects: the
accuracy, the time required to test input data, and the time re-
quired to train it. The accuracy is the most important attribute,
since a classifier that cannot classify accurately is of little use.
Because we aim to build recognizers for eager recognition, there
is little tolerance for the time to test input data; it needs to be
fast enough so users will not have to wait before drawing the
next stroke. Time to train a classifier is relatively unimportant,
because it happens only once in the life cycle of a classifier;
however, if a classifier takes much longer to train without pro-
ducing significantly greater accuracy, the faster versions would
be considered better in this study.

In the third step we investigate the use of feature selection. An
algorithm may consider all the given features. However, there
may be misleading or duplicated information in these features
which can potentially affect the performance of the generated
classifier. We believe selecting better features has the poten-
tial to improve the algorithms. Instead of finding better fea-
tures and removing them heuristically, WEKA provides a
special meta classifier called “attribute selected classifier,”
which allows users to specify an attribute evaluator and an al-
gorithm to use, and it will apply the evaluator to find the bet-
ter features first and use them in the algorithm.

The fourth and final stage of our analysis involves the ex-
ploration of algorithm ensembles to further improve recognition
results. Previous studies (Connell et al., 2000; Alimoglu & Al-
paydin, 2001; Kara & Stahovich, 2004) have shown that accu-
racy may be improved by combining algorithms. However, this
was not the case with Blagojevic (2011), where the ensembles

RATA.Gesture: A gesture recognizer developed using data mining 353



produced worse results. Two methods of combining the algo-
rithms are explored. The first is voting: this method takes a
group of algorithms and combines their individual classifica-
tions together by a probability based vote. The classification
with the highest vote wins. The second method is stacking,
where each algorithms results are weighted based on their
performance in different areas. Various combinations of algo-
rithms and methods are considered during the experiment, be-
cause each algorithm performs differently, and even a worse
performing algorithm can aid recognition if it has strengths in
an aspect that is not so well covered by other algorithms.

3.3. Evaluation

To test the performance of our new recognizer we evaluate it
against existing recognizers supported in the Evaluator
(Schmieder et al., 2009). The evaluation includes data sets
that are not used in the data mining analysis process, to ensure
the resulting recognizer from our analysis can be applied not
only to the training domains but also to other diagram do-
mains. If our recognizers overall performance is superior to
others then data mining is shown to be a good approach in
sketched diagram recognition. Even if, on particular data
sets, there is no significant difference between our recognizer
and the recognizer designed for that data set, our recognizer is
still beneficial because of its flexibility.

4. DATA AND INK FEATURES

A data set of feature vectors is required to run an initial trial on
the algorithms; data sets are also necessary for the remaining
data mining analysis steps. For the initial identification of
possible algorithms a small simple data set of graph drawings
was used. For the more critical algorithm tuning, feature se-
lection and ensemble investigations, three diagram sets
were collected from 20 participants. As we concentrate on
single stroke recognition, the participants were asked to

draw each component in a single stroke. A summary of the
data in each is shown in Table 1.

Shapes data set (ShapeData) includes six shapes, each
drawn in isolation with no relationship with other shapes.
This simulates isolated collection as described in Section
3.1. All shape classes used in other data sets can be found
within ShapeData. Directed graph data set (GraphData) in-
cludes three shape classes, in which a certain relationship is
present between them. Although the diagram is relatively sim-
ple, it includes arrowheads, which are well known as a difficult
component to recognize (Kara & Stahovich, 2004; Freeman &
Plimmer, 2007). The class diagram data set (ClassData) in-
cludes five shapes with relationships between them. They repre-
sent more difficult diagrams: more shape classes and more com-
plex relationships.

The data sets are roughly differentiated by the number of
shape types and the collection method. A variety of data sets
should ensure the tuned algorithms can be applied to different
diagram types.

These data sets were collected and labeled in DataManager
(Blagojevic et al., 2008). From the labeled sketches we used
DataManager’s feature library to compute ink features; with
the current version it is capable of generating 114 features
(Blagojevic et al., 2010). These features measure aspects of
individual strokes such as curvature, size, density, and spatial
and temporal relationships to other strokes in the diagram.
They can be calculated in 0.087 s for each stroke (Intelw
CoreTM2 Duo Processor E8400 and 4 GB of RAM). Data
Manager’s feature library is available online at http://www.
cs.auckland.ac.nz/research/hci/downloads/.

Additional data was collected for our final evaluation;
these data sets are described in Section 6.

5. DATA MINING ANALYSIS

Several steps were used in our analysis and training of algo-
rithms to build a recognizer. First the full range of suitable

Table 1. Data sets used for our analysis

ShapeData GraphData ClassData

Example

Collection method Isolated In situ In situ
Rectangle 80 — 170
Ellipse 80 146 —
Triangle 80 — 57
Line 80 172 215
Arrowhead 80 173 96
Diamond 80 — 60

Total 480 491 598

Note: A colour version of this table can be viewed online at http://journals.cambridge.org/aie

S.H.-H. Chang et al.354



WEKA algorithms was tested (Section 5.1) and a set of well
performing algorithms were selected for tuning (Section 5.2).
The tuning process used feature data from the three different
data sets described in Section 4. In the next step we applied fea-
ture selection (Section 5.3) in an attempt to eliminate features
that are not useful. After ranking (Section 5.4), the tuned algo-
rithms were used together with the data sets to explore ensem-
ble strategies (Section 5.5), again using WEKA algorithms.

These experiments require a lot of computational power.
Initially only one machine, an Intelw CoreTM2 Duo Processor
E8400 and 4 GB RAM, was used. In the later stages three ma-
chines with similar specifications, and two virtual machines
based on Intelw Xeonw Processor E7330 and 2GB memory
were employed. However, on any of these machines there are
experiments that can take weeks to complete.

The details of each step in our analysis and the results ob-
tained are described in the following sections.

5.1. Algorithm exploration

WEKA (Witten & Frank, 2005) was selected to supply the
data mining algorithms: it is an open source tool that provides
many data mining techniques. Because WEKA is developed
to support different data mining problems, each algorithm ex-
poses settings that can be altered for tuning. WEKA includes
many algorithms and not all are suitable for ink feature data.
We analyzed all possible algorithms provided by WEKA,
with their default settings, on a simple graph data set. Among
those algorithms, 40 stood out as having higher accuracy than
the others (greater than 90%); the results from these algo-
rithms are shown in Table 2. Algorithms which failed to clas-
sify the data set or achieved poor accuracy were not consid-
ered further.

Although many algorithms were filtered off, there were still
40 algorithms remaining. For practical reasons we needed to

narrow this set further: tuning and testing each algorithm took
many hours of computation time (some 10-fold cross valida-
tion runs took 3 weeks). We could have simply picked the top
performing ones from this stage of our analysis. However, it is
clear from related research that algorithm performance varies
depending on the data set. In addition, some algorithms re-
spond well to tuning of parameters therefore we did not
want to rule them out at this stage. Furthermore, because
we planned to explore combining algorithms with ensemble
techniques, algorithms with strengths in different aspects
are desirable.

Eight algorithms were selected as worthy of further investi-
gation. These algorithms represent a range of different ap-
proaches, including tree generating algorithms, a support vec-
tor machine, a neural network and meta-algorithms. In addition
we added the Bayesian network (BN) as it was applied in a pre-
vious study (Sezgin & Davis, 2007). Although there are clas-
sifiers that appear to have better performance, they were ex-
cluded either because they have limited tuning capabilities or
are very similar to other algorithms that are included.

To summarize, our selection process was a combination of
performance on the initial data set, tune-ability of the algo-
rithm, covering a range of techniques and including some al-
gorithms that had been used by others for digital ink. The nine
selected algorithms are the following:

1. bagging (BAG; Breiman, 1996).
2. BN (Ben-Gal, 2007).
3. ensembles of nested dichotomies (END; Frank & Kra-

mer, 2004; Dong et al., 2005).
4. alternating decision tree (using the LogitBoost strategy;

LAD; Holmes et al., 2002).
5. LogitBoost (LB; Friedman et al., 2000).
6. logistic model trees (LMT; Landwehr et al., 2005; Sum-

ner et al., 2005)

Table 2. Algorithm exploration results for those over 90%

Algorithm Accuracy Algorithm Accuracy Algorithm Accuracy

SMO 96.18 Dagging 93.61 J48 92.11
Simple logistic 96.13 Random Sub Space 93.41 Radical basis function network 92.10
LMT 96.08 Bagging 93.38 Attribute selected classifier 91.86
Multilayer perceptron 96.01 Naı̈ve Bayes tree 93.32 Decision table 91.84
Random committee 95.58 Multiclass classifier 93.27 Logistic 91.77
Classification via regression 95.53 Filtered classifier 93.00 J48graft 91.75
Rotation forest 95.48 Class balanced ND 92.87 Ridor 91.73

Functional tree 95.12 Decision table naı̈ve Bayes hybrid 92.81
Nearest neighbor generalized

exemplars 91.18
Random forest 95.09 Ordinal class classifier 92.79 Random tree 90.84
Instance based learning 94.75 Data near balanced nested dichotomies 92.77 Reduced error pruning tree 90.76
k nearest neighbours (Ibk) 94.75 Bayes net 92.74 Naı̈ve Bayes 90.09
Logit boost 94.68 JRip 92.70 Naı̈ve Bayes updatable 90.09
END 94.15 Nested dichotomies 92.66
Protective adaptive resonance

theory 93.72 LAD tree 92.53

Note: Final candidates are in bold. Details of the algorithms are available in Witten and Frank (2005).

RATA.Gesture: A gesture recognizer developed using data mining 355



7. multilayer perceptron (MLP; Minsky & Papert., 1969;
Rumelhart et al., 1986).

8. random forest (RF; Breiman, 2001).
9. sequential minimal optimization (SMO; Hastie & Tib-

shirani, 1998; Platt, 1999; Keerthi et al., 2001).

5.2. Tuning

Most algorithm in WEKA contains settings which can be ad-
justed to alter the nature of that algorithm. The tuning con-
ducted on each algorithm was a five step process:

1. measure base performance from default settings,
2. tune each parameter setting independently,
3. combine optimal individual parameters to produce a

tuned algorithm,
4. compare the tuned algorithm with base algorithm, and
5. select the more promising one.

In the first step the data sets were used to train and test each
algorithm with the default settings using 10-fold cross valida-
tion. The results for this are shown in Table 3 in the 10-Fold:
Default column.

Next we looked at the parameter settings available for each
algorithm in turn (WEKA makes different parameters available
depending on the algorithm: e.g., users can specify the number
of trees for RF). Where algorithms have multiple parameters
each was considered individually; default values were used
with the exception of the one being analyzed. Most parameters
are binary or numeric; both states were applied if they were bi-
nary, and a series of different values was used for numeric
parameters. The settings were applied to each data set indepen-
dently. For each setting, the accuracies generated by changing
its value were compared, and the value that returned the highest
accuracy at the lowest cost was taken as the optimal value. In
most cases the optimal setting was the same or had the same
trend across data sets. If a setting had different effects on differ-
ent data sets, the average of the data sets was taken.

The tuned algorithm is that with all the individual param-
eters set at their average optimal value. The detail of the tun-
ing of each algorithm is described in Subsections 5.2.1–5.2.9.
Many parameter settings did not make large differences to the
results we obtained; we only report those that did.

We did not consider the effect of different combinations of
settings because of practical time and computational constraints.
Although each individual setting performs well with its optimal
value, combining optimal values does not necessarily give the
best results. Hence for each tuned algorithm we repeated the
10-fold cross validation (Table 3, 10-Fold: Opt column).

However, while 10-fold cross validation can reduce the ef-
fect of overfitting, it is not perfect for diagram recognition be-
cause cross validation randomly selects training examples
from the data set, and therefore each participant could partici-
pate in training data as well as testing data. Such situations are
too optimistic for “out of the box” recognizers where users are T

ab
le

3.
T

un
ed

al
go

ri
th

m
re

su
lts

an
d

ra
nk

in
gs

R
an

do
m

S
pl

itt
in

g
A

ve
ra

ge
O

rd
er

ed
S

pl
itt

in
g

A
ve

ra
ge

10
-F

ol
d

10
%

–9
0%

50
%

–9
0%

10
%

–9
0%

50
%

–9
0%

A
ve

ra
ge

R
an

k
D

ef
au

lt
O

pt
R

an
k

D
ef

au
lt

O
pt

R
an

k
D

ef
au

lt
O

pt
R

an
k

D
ef

au
lt

O
pt

R
an

k
D

ef
au

lt
O

pt
R

an
k

B
N

97
.5

98
.6

1
96

.6
97

.9
1

97
.1

98
.4

1
94

.7
96

.3
1

95
.2

97
.5

1
1.

0
R

F
97

.9
98

.4
2

96
.4

97
.7

2
97

.6
98

.2
2

93
.2

95
.4

2
94

.1
96

.1
4

2.
3

L
A

D
96

.4
98

.6
1

95
.2

97
.6

3
96

.2
98

.1
3

91
.2

94
.3

3
94

.2
96

.4
2

2.
4

L
B

98
.4

98
.7

2
96

.9
94

.7
4

98
.0

98
.2

4
93

.1
92

.3
4

96
.3

96
.9

3
3.

4
L

M
T

98
.2

98
.4

2
95

.7
96

.1
6

97
.2

97
.3

7
91

.4
91

.5
5

95
.0

95
.2

6
4.

9
M

L
P

98
.4

98
.4

2
95

.9
96

.0
7

97
.6

97
.6

5
90

.5
90

.7
7

95
.3

95
.3

5
5.

3
E

N
D

97
.3

97
.9

4
95

.2
96

.2
5

96
.8

97
.4

6
90

.1
91

.0
6

93
.6

94
.6

7
5.

4
S

M
O

98
.2

98
.0

3
95

.4
94

.4
8

97
.1

96
.0

8
90

.1
88

.9
8

93
.8

93
.1

8
6.

8
B

A
G

96
.1

96
.4

5
94

.6
95

.3
9

95
.9

96
.3

9
89

.8
89

.8
9

92
.1

92
.5

9
8.

0

M
ea

n
of

te
st

s
ov

er
th

e
th

re
e

da
ta

se
ts

de
sc

ri
be

d
in

S
ec

tio
n

4.

S.H.-H. Chang et al.356



different from the ones who provided training data. Based on
this consideration two splitting experiments, random splitting
and ordered splitting, were conducted. For each experiment,
the data is split into training and testing. A 10% splitting in-
dicates 10% of the data was selected for training and the re-
maining 90% for testing. Nine different splits were chosen,
from 10% to 90% with 10% intervals.

Random splitting selects training examples randomly from
the input data. To remove the noise the average of all rounds is
taken. Although a participant can still appear in both training
and testing, this experiment shows the relationship between
the number of training examples and the accuracy. Ordered
splitting selects training examples from the start of the data
set. For example, with a data set of 500 strokes, 10% splitting
will take the first 50 strokes as training examples, while the
rest become testing examples. Because our data sets were or-
ganized in the order of participants, and the numbers of
strokes drawn by each of the 20 participants is similar, we
can assume that each 10% in ordered splitting is equivalent
to two participants, which ensures the training examples are
from different participants who presented testing examples.
The average results for the random and ordered splitting re-
sults are presented in Table 3. We noted that all algorithms
had increased accuracy with more data, and all reached their
maximum accuracy with less than 50% of the data.

In the following subsections we detail the tuning of each
algorithm. We report those parameters that were effective
and compare the training and classification times for the
tuned and untuned algorithm.

5.2.1. BAG

Several parameters are available in WEKA for BAG (Brei-
man, 1996). We investigated each parameter; the only one to
make a noticeable difference to the accuracy was the number
of iterations. Bagging uses an ensemble of trees for classifica-
tion. One tree is generated during each iteration of the BAG
algorithm; in other words the more iterations Bagging runs
the larger voting committee it will have. With our data, a
steady state was achieved between 50 and 100 iterations (de-
pending on data set); we chose to use 70 iterations.

Using 70 iterations, as opposed to the default setting of 10
iterations, results in an increase in accuracy by 0.4% on aver-
age. A z test shows that this difference is not significant (SD
, 0.01, p¼ 0.53). In contrast, the training time is eight times
longer. Because with both settings the classification time is
,0.01 s and the tuned algorithm results in improvements
for all data sets, we believe altering the number of iterations
can be considered. However, it is not necessary as the differ-
ence in accuracy is not statistically significant.

5.2.2. BN

A BN (Ben-Gal, 2007) uses a directed acyclic graph to per-
form classification. A search method must be used to con-
struct the network during training. We tuned the BN by inves-
tigating different search algorithms. Five search methods
were investigated. We found that compared with K2, the de-
fault algorithm, TAN performs significantly better on aver-
age, according to a z test (SD , 0.01, p , 0.01). Based on
these results we selected this setting for further tests (see
Fig. 1).

Greater improvements in accuracy are observed for the more
complex data set, class diagrams. Although training time is
higher than with the default search method (see Fig. 2), com-
pared with other algorithms the training time of BN is relatively
small. The maximum classification time observed is ,0.01
s. We did not observe great differences in performance when
investigating other parameters of the BN.

5.2.3. END

END (Frank & Kramer, 2004; Dong et al., 2005) uses an
ensemble of trees. We tuned this algorithm by varying the
number of trees produced, which is set by the number of itera-
tions performed. We tried iterations between 0 and 1000 (the
default setting is 10).

We compared the accuracy of END with three settings: the
default 10 iterations, 50 iterations, which is when the algo-
rithm reaches good performance, and 1000 iterations which
is the average best performing setting. We found that the ac-
curacy for tuned algorithms is higher than the default for
all data sets, although our z test between the default and

Fig. 1. The accuracy of the Bayesian network versus search algorithms. [A color version of this figure can be viewed online at http://
journals.cambridge.org/aie]

RATA.Gesture: A gesture recognizer developed using data mining 357



1000 iteration models showed no significant difference (SD
, 0.01, p ¼ 0.12). Training times for the tuned models are
also higher.

We observed large differences in classification times with
50 and 1000 iterations, where average classification time for
1000 iteration is 0.48 s as opposed to 0.01 s for 50 iterations.
The classification time is also related to the number of tar-
geted classes in each data set. For example with 1000 itera-
tions END requires only 0.2 s for the simple GraphData
data set, but more for the other data sets.

Because during the experiment END with 1000 iterations
demonstrated better accuracy (although not statistically sig-
nificant), it was selected to be further analyzed in the follow-
ing experiments. We investigated other parameters for END,
however none had a noticeable effect on its performance.

5.2.4. Alternating decision tree (using LAD)

LAD (Holmes et al., 2002) constructs a tree for classifica-
tion. The size of the tree is specified by the number of boosting
iterations. We tuned this parameter by trying values between
0 and 200. We observed that levels of accuracy reached a
maximum around 110 iterations on average (see Fig. 3).

In comparison to the default value of 10 boosting iterations,
this setting gives significantly more accurate, results on average
according to a z test (SD , 0.01, p , 0.01; see Fig. 4). How-

ever, the training time also increased by a large amount (see
Fig. 5). Because the maximum classification time in both cases
is ,0.01 s, we believe this tuned model is suitable for eager
recognition. However, users must be aware of the long training
time required.

Furthermore the improvements observed for complex dia-
grams are larger. Although the improvement in GraphData is
small, ClassData has accuracy levels over three percent higher
using the tuned setting over the default configuration. According
to Figure 3, the classification accuracy of ClassData is still in-
creasing with more iterations; hence we believe with more com-
plex data sets, potentially even more iterations can be applied.

5.2.5. LB

LB (Friedman et al., 2000) is an ensemble of trees. A new
tree is constructed for each iteration of the algorithm during
training. We tuned this algorithm by varying the number of
iterations performed between 0 and 1000. We found that on
average, 70 iterations is optimal.

We compared LB with its default configuration (10 itera-
tions) to our tuned setting of 70 iterations. The accuracy for

Fig. 2. The training time of the Bayesian network with default and tuned
settings. [A color version of this figure can be viewed online at http://
journals.cambridge.org/aie] Fig. 4. The accuracy of alternating decision tree (using the LogitBoost

strategy) with default and tuned settings. [A color version of this figure
can be viewed online at http://journals.cambridge.org/aie]

Fig. 5. The training time of alternating decision tree (using the LogitBoost
strategy) with default and tuned settings. [A color version of this figure
can be viewed online at http://journals.cambridge.org/aie]

Fig. 3. The accuracy of alternating decision tree (using the LogitBoost
strategy) versus the number of boosting iterations. [A color version of this
figure can be viewed online at http://journals.cambridge.org/aie]

S.H.-H. Chang et al.358



ClassData shows the most improvement with our tuned set-
ting, while there are no large differences observed for the
other data sets. ClassData is more complex than the other
data sets in both the number of shapes and the way data is col-
lected. We believe the reason it shows the greatest improve-
ment is because a higher number of iterations is able to model
this complex data set more accurately. A z test showed no sig-
nificant difference on average between the default and tuned
algorithm (SD , 0.01, p ¼ 0.32).

The maximum classification time observed is ,0.01 s.
Other parameters were investigated for possible tuning, how-
ever we did not observe great differences with these experi-
ments. Based on these results we decided to use the default
configuration for LB in further tests.

5.2.6. LMT

LMT (Landwehr et al., 2005; Sumner et al., 2005) is a tree
with regression functions at each leaf, built using LB. Several
parameters are available in WEKA for LMT. We investigated
each parameter to determine if the algorithm’s accuracy could
be improved from the default settings in WEKA.

Four parameters were found to effect accuracy. The first
parameter was the error on probabilities. This allows users
to select the kind of error for the algorithm to minimize during
training. Because each method of minimizing errors focuses
on different perspectives, they behave differently; however,
the difference between them should be marginal. According
to our results, the default setting (false), which minimizes
the misclassification error, is more suitable for complex
data therefore we chose to set this parameter to minimize
the root mean squared error instead (true).

The second parameter is the minimum number of instances
for which a node is considered for splitting (default value¼
15). We tried settings between 0 and 700 and found that the
average maximum performance occurs at 200; therefore we
selected this as the optimal setting.

The third parameter is the number of boosting iterations,
indicating the number of iterations of LB performed through-
out the tree. Values less than 1 (default value¼ –1) indicate
cross validation will be used to find the optimal number of
iterations. This setting aims to allow the algorithm to find
the best configuration suitable for the input data. However,
according to the results we believe this default setting is not
optimal in our case. Furthermore, the cross validation adds
additional overhead to the training process. We set this pa-
rameter to 50 based on our analysis results.

The last parameter tuned was “Use AIC” (default: false).
The Akaike information criterion (AIC) is used for model se-
lection to find the fitness of a statistical model. It is used by
LMT to decide the best number of LB iterations. It has a pos-
itive effect toward more complex models, but has no effect on
GraphData that is relatively simple therefore we chose to set
this to true.

We compared LMT with the best settings we found for
each of the four parameters described above to LMT with
default settings. For most data sets the accuracy levels are

higher with the tuned algorithm. However, a z test shows
that there is no significant difference (SD , 0.01, p ¼
0.54). The training time is similar to the default or lower in
some cases. Although there is no statistically significant dif-
ference in accuracy we decided to use the tuned LMT algo-
rithm in further tests. The maximum classification time ob-
served is ,0.01 s.

5.2.7. MLP

MLP (Minsky & Papert., 1969; Rumelhart et al., 1986) is
an artificial neural network model which can represent non-
linear classifications. It has an input layer, hidden layers
and an output layer. We investigated many parameter settings
for MLP and found four parameters that we believed were
worth tuning.

The first was the number of hidden layers. We tried values
between 0 and 100. According to our data we observed that
generally 10 or more hidden layers are enough for MLP to per-
form well. It appears to be complexity dependent, as we see
the maximum accuracy for GraphData occurs at 20, Shape
Data is slightly above 20 while ClassData is at 50. WEKA
provides several wildcards for dynamic decision based on the
number of features (used as the default setting). However, ac-
cording to our data, these wildcards do not return the best re-
sult. We decided to fix the value at 40.

The second parameter is the learning rate (default value¼
0.3). The learning rate defines the amount by which the
weights for each connector are updated. A small learning
rate is inefficient, requiring a long time to train, while a large
learning rate emphasizes the impact of noise. Our results sug-
gest that the learning rate should be below 0.6. The results
also show that higher learning rates have a greater effect on
more complex data sets. Based on our experiments we deci-
ded on a learning rate of 0.4.

The third parameter is momentum. The momentum value
can smooth the weight changing process. A large momentum
causes the weight to be updated rapidly and vice versa. We
observed a decrement in accuracy with momentum over
0.8; we believe that this is because when a new training sam-
ple is introduced the weights can change very rapidly to over-
fit the model to this particular sample. We set momentum to
0.4 based on these observations.

The fourth and last parameter is the nominal to binary filter
(default is true). Although this is intended to accelerate the
process, it also affects the accuracy measure. Our results
show that turning it off can result in higher accuracy.

We compared MLP with our tuned parameter settings to
the default MLP algorithm. Although there is no difference
in the results, the tuning speeds up the training time. This is
a desirable characteristic considering that the accuracy is
not affected. The maximum classification time is 0.1 s.

5.2.8. RF

RF (Breiman, 2001) is an ensemble of random trees. We
tuned this algorithm to find the optimal number of trees to
construct. We tried values between 10 and 1200 trees and

RATA.Gesture: A gesture recognizer developed using data mining 359



found that, although more trees can increase the power of vot-
ing, the accuracy stabilizes for our data after 100 trees.

On average the level of improvement can be associated
with the number of shape classes; the more classes the larger
the improvement. This is because more relationships can be
captured with a larger amount of trees.

We compared RF with default values (10 trees) and with 100
trees and found that the accuracy is higher with 100 trees. Al-
though a z test showed that this difference is not statistically sig-
nificant (SD , 0.01, p¼ 0.14). We also observed that 100 trees
take 11 times longer to train than the default setting. Although
the improvement in accuracy is not significant, we suggest
using 100 trees because the level of accuracy was higher and sta-
bilized at about this level, in addition the time to train is accep-
table. With more data the differences may be statistically signif-
icant. The maximum classification time observed is 0.01 s.

5.2.9. SMO

After an investigation of the parameters of SMO (Hastie &
Tibshirani, 1998; Platt, 1999; Keerthi et al., 2001) we found
the algorithm performs well with the default settings. How-
ever, we decided to explore how the parameter to build logis-
tic models behaves, because it returns probability measures
that can be useful in many situations for further recognition
steps. According to the experiment results, the accuracy de-
creases while the training time increases. A z test shows
that there is no significant difference between the default
and tuned models (SD , 0.01, p¼ 0.56). The maximum clas-
sification time is 0.03 s.

5.2.10. Summary of algorithm tuning

In summary, the effects of tuning varied among the algo-
rithms. We found a significant difference between tuned and
default algorithms for the BN and the LAD Tree. In most other
cases the tuned models, although they had a higher accuracy,
were not significantly different to the default models: in part
this is because, although there is sufficient data for training,
the data sets are not large, hence our decision to use some tuned
algorithms regardless of the lack of significant improvement.
The default configuration was chosen for only two algorithms,
LB and SMO; their accuracy levels were not consistently
higher for the tuned models in all tests (including ordered
and random splitting tests). For all other algorithms the tuned
models were chosen. Table 4 summarizes the configurations
used for further testing based on our tuning analysis step.

5.3. Feature selection

The next step was an attribute selection experiment. As all
114 features were used, we were concerned about computa-
tion time for on-line, real-time recognition. Although it takes
only 0.087 s to calculate on a desktop with an Intelw CoreTM2
Duo Processor E8400 and 4 GB of RAM, we reasoned that
ineffective features should be discarded; furthermore, the ad-
dition of new features in the future will most likely increase
the calculation time.

The AttributeSelectedClassifier with wrapper (Kohavi &
John, 1997) from WEKA was applied with all the selected al-
gorithms using the final configurations shown in Table 4.
WrapperSubsetEval, implemented in WEKA, was used as
the evaluator. This allows the same classifier to be used for
evaluating features and building a final model for classifica-
tion. This evaluator is a suitable approach for attribute selec-
tion and it has been successfully applied to diagram recogni-
tion (Paulson & Hammond, 2008). BestFirst was chosen as
the search algorithm for its good performance.

We compared the attribute selected algorithms with their
default version. We used 20% random splitting where 20%
of the data set was used for training and the remainder of
the data for testing. The results are presented in Table 5;
they show that most algorithms have poorer accuracy when
attribute selection is applied (in bold) except MLP and
SMO. There are two reasons that may explain this behavior.
First, most of our selected algorithms applied a voting algo-
rithm, which requires variation. Selecting a subset from the
original feature set may eliminate effective features and re-
duce this variation, and further reduce the accuracy. Second,
most of these algorithms generate tree structures, which split
based on the more valuable features, hence attribute selection
is not only redundant but can also accidentally remove useful
features. In contrast, Multilayer Perceptron and SMO do not
have the properties stated above; hence, by eliminating bad
attributes they show improvement in accuracy. However,
our z tests show that these improvements are not statistically
significant (MLP SD , 0.01, p¼ 0.53; SMO SD , 0.01, p¼
0.55). Unfortunately the experiment failed to run with LAD
Tree; however, given the poor results obtained with the other
algorithms we do not believe significant differences would be
found with this algorithm.

Training times are consistently longer compared with the
default, with factors from 340 to 18,800. This is due to the
process of selecting attributes which uses 10-fold cross vali-

Table 4. Final algorithm configurations used
for further analysis

Algorithm Configuration

BAG Number of iterations: 70
BN Search algorithm: TAN
END Number of iterations: 1000
LAD Number of iterations: 110
LB Default
LMT Error on probabilities: true

Minimum number of instances: 200
Boosting iterations: 50
Use AIC: true

MLP Hidden layers: 40
Learning rate: 0.4
Momentum: 0.4
Nominal to binary: false

RF Number of trees: 100
SMO Default

S.H.-H. Chang et al.360



dation. In contrast, for some algorithms, MLP, SMO, and BN,
the testing time is reduced. This is because the attribute se-
lected algorithms used less features than the default versions,
reducing the time taken for classification.

In summary, two algorithms had marginally improved accu-
racy, although not statistically significant. The training times
increased considerably for all algorithms. We hence decided
not to apply attribute selection any further in this study.

5.4. Algorithm ranking

In order to rank the algorithms we combined results from the
different evaluations. We used the tuned algorithm except for
SMO and LB for the reasons described above.

As noted above, the splitting experiments suggested algo-
rithms have better performance with more training data. Rea-
soning that in real world usage more training examples will be
available, rankings from splitting experiments with training
data from 50% to 90% are included separately. However, be-
cause they are using the same information as used by random
splitting (RS) and ordered splitting (OS), we decided not to
treat RS50 and OS50 as equal weight. The ranking was calcu-
lated by applying a nominal ranking score (as shown in Ta-
ble 3) to each algorithm for each experiment, and applying
the following formula:

average ranking ¼ 10-foldþ RSþ OSþ 0:5 (RS50þ OS50)
4

:

BN demonstrates the best overall performance, as shown
in Table 3. LB is an interesting case: although it generally
performs well, it produces a comparatively poorer perfor-
mance with the full splitting experiments. Investigation sug-
gested that this is because it tends to overfit with less training
examples.

5.5. Ensembles

Two ensemble strategies were explored: voting and stacking.
Voting combines classifiers by averaging the probability es-
timates of each class and making decisions on the highest
possible classification. Stacking is more sophisticated: it ap-

plies two levels of classification by using a metaclassifier to
classify the results returned by each contributing algorithm.
As the metaclassifier should be relatively simple (Witten &
Frank, 2005), we tested Zero R, Naı̈ve Bayes, J48, and Sim-
ple Cart; among which Naı̈ve Bayes has the best performance.
Surprisingly, the results show that voting has higher accuracy
(about 1% more). Because voting also requires less training
time, we focused on applying it as the ensemble strategy.

Different combinations of the base nine algorithms were
explored (using the configurations shown in Table 6) to max-
imize the recognition rate and minimize the computation
time; because nine algorithms have 502 possible combina-
tions it was impractical to do an exhaustive search. After ex-
ploring a variety of strategies we applied the following steps
using 10-fold cross validation:

1. Find the best number of algorithms by starting with all
algorithms and progressively removing the lowest
ranked algorithm. By comparing all the results, we
found four contributing algorithms to be optimal.

2. Swap the worst performing of the four algorithms with a
lower ranked algorithm and compare the results. If it im-
proves the recognition rate retain it.

3. Repeat 2 for all algorithms.

We found four algorithms provided the best results: the
results of the 22 combinations with four algorithms we
investigated are shown in Table 6. Our previous recognizer,
RATA.SSR (Chang et al., 2010), was the ensemble that
produced the highest results. However, after further use of
this model we found it to be unstable.

We examined these faults and found its instability is a di-
rect result of using the LAD Tree algorithm, which we could
not easily correct to handle some types of missing values. The
second ensemble, using BN, LB, LMT, and RF, is not signif-
icantly different to RATA.SSR with an average accuracy of
99.56%. There is very little difference between the results ob-
tained for each combination tested.

A statistical z test was performed between this ensemble
and the best performing individual algorithm, BN. On the
average of all tuned results, it was confirmed that the differ-

Table 5. Results of default settings versus attribute selected classifiers

Accuracy (%) Training Time (s) Testing Time (s)

Default AttSel AttSel-Def Default AttSel AttSel/Def Default AttSel

MLP 93.81 94.19 0.38 19.64 6695.56 340.97 0.07 0.00
SMO 93.29 93.66 0.37 0.09 1630.36 18811.81 0.01 0.00
Bagging 93.75 92.56 21.19 0.10 130.87 1308.73 0.00 0.00
RF 95.04 93.83 21.21 0.02 163.81 9828.60 0.00 0.00
END 93.76 92.15 21.61 0.23 563.98 2488.13 0.02 0.02
BN 95.92 94.04 21.88 0.02 42.79 1834.00 0.02 0.00
LMT 95.25 93.01 22.24 3.31 8042.61 2427.35 0.00 0.01
LB 95.79 92.79 23.00 0.25 362.83 1470.92 0.00 0.00

RATA.Gesture: A gesture recognizer developed using data mining 361



ence was statistically significant (SD , 0.01, p ¼ 0.01). We
named this ensemble RATA.Gesture.

6. EVALUATION

To evaluate RATA.Gesture we have compared it with four
other recognizers using one of our own data sets and two
data sets that have been used to evaluate other recognizers.

The other recognizers used in the evaluation are $1 (Wob-
brock et al., 2007), Rubine (1991; as implemented in InkKit;
Plimmer & Freeman, 2007), PaleoSketch (Paulson & Ham-
mond, 2008), and CALI (Fonseca et al., 2002). $1 and Ru-
bine are trainable recognizers so any data set can be used. Pa-
leoSketch and CALI, however, are hardcoded; thus, to be fair
we must consider their effectiveness on the classes that we
can reasonably map between the data sets used in the evalu-
ation and what they can recognize.

The data sets used in the evaluation are our own Flow-Chart
data set, a $1 data set, and a PaleoSketch data set. The flow-
chart data set (Fig. 6) was collected at the same time and

from the same participants as the data set described in Section
4. From the 20 participants there are 683 strokes which broken
down by class are rectangle 99, ellipse 42, line 242, arrow-
head 239 and diamond 61. They were collected and labeled
in DataManager (Blagojevic et al., 2008). With five shape
classes, this data set represents difficult diagrams: more shape
classes and more complex relationships.

The $1 data set downloaded from (Wobbrock et al., 2009)
has 16 different classes (Fig. 7). It has been collected as iso-
lated shapes, in a similar way to our ShapeData, from 11 par-
ticipants. The 16 shape classes have 330 examples per class.
We converted the data to the DataManager format for the
evaluation.

The PaleoSketch data set with 9 classes (Fig. 7) was pro-
vided by (Paulson & Hammond, 2008). It was also collected
as isolated shapes and has data from 20 participants, with
each drawing having approximately 10 examples of each
shape. The shape classes are arc, circle, complex, curve, el-
lipse, helix, line, polyline, and spiral. Complex and polyline

Table 6. Results of voting combinations with four algorithms

Rank BN Bag END LADTree LB LMT MLP RF SMO Average

1 (RATA.SSR) v v v v 99.57
2 (RATA.Gesture) v v v v 99.56
3 v v v v 99.52
4 v v v v 99.52
5 v v v v 99.46
6 v v v v 99.40
7 v v v v 99.40
8 v v v v 99.40
9 v v v v 99.39
10 (top 4) v v v v 99.35
11 v v v v 99.35
12 v v v v 99.35
13 v v v v 99.35
14 v v v v 99.34
15 v v v v 99.34
16 v v v v 99.33
17 v v v v 99.33
18 v v v v 99.29
19 v v v v 99.21
20 v v v v 99.21
21 v v v v 99.17
22 v v v v 99.17

Fig. 6. An example diagram from the flowchart data set with strokes color
coded by class. [A color version of this figure can be viewed online at
http://journals.cambridge.org/aie] Fig. 7. Data sets from other research: $1 data set from Wobbrock et al. (2007).

S.H.-H. Chang et al.362



are catchall classes that do not represent any particular visual
element; for example, the adjacent star and random shape in
Figure 7 are both categorized as five line polygons. There
are some corruptions in this file that we have not managed
to identify, therefore we have 50% of the data for the evalu-
ation. This provides ample examples for accurate results.

For the trainable recognizers, RATA.Gesture, $1 and Ru-
bine, we split each data set in half, trained on one half and
tested on the other, and then reversed the sets for another
round. There were small differences between the results for
each round, which are averaged for each data set.

Evaluating the fixed recognizers, CALI and PaleoSketch,
presented some problem; the raw tests when we did very sim-
ple mappings of obviously related shapes (such as ellipses
and circles) resulted in very poor recognition rates 37.5%
and 50.7%, respectively. For these recognizers we also report
success rates for those shapes that appear in both the data set
and recognizer. The FlowChart data set can be fully evaluated
as there are matching classes for each class in CALI and Pa-
leoSketch; however, they do classify some shapes as classes
that do not exist in the flowchart, for example spirals. For the
$1 data set, we removed Check, LeftCurly, Pigtail, Right-
Curly, and Star for PaleoSketch, using only Caret, Circle,
LeftCurly, Rectangle, RightCurly, V and Triangle for
CALI. For the PaleoSketch data set, CALI can only handle
Arc, Circle, Ellipse and Line; and for other recognizers, be-
cause of the variable nature of the PaleoSketch complex
and polyline classes we also report results with these two
classes removed.

The evaluation was conducted with the evaluator imple-
mented within DataManager (Schmieder et al., 2009). The re-
sults are shown in Table 7. On average, RATA.Gesture
clearly outperforms all other algorithms. For the flowchart
data set, a z test showed that RATA.Gesture is significantly
more accurate than the next best algorithm (excluding RA-
TA.SSR), Rubine (SD ¼ 0.01, p , 0.01).

It is not surprising that the $1 algorithm on the $1 data set,
and PaleoSketch algorithm on the PaleoSketch data outper-
form RATA. For the $1 data set, there is a significant differ-
ence between RATA.Gesture and the $1 algorithm (SD ,

0.01, p , 0.01). There is no significant difference between
RATA.Gesture and the next best algorithm (excluding
RATA.SSR) on this data set, Rubine (SD , 0.01, p ¼ 0.06).
All the trainable recognizers suffer from the catchall polyline
classes in the raw PaleoSketch data set, although RATA.Ges-
ture does achieve 92.5%. Tests without these classes (Paleo
Sketch data: Part) show that RATA.Gesture is not significantly
different to the PaleoSketch recognizer (SD , 0.01, p¼ 0.07).
It also outperforms the other trainable recognizers.

Results of RATA.SSR on these data sets are also shown in
Table 7. RATA.Gesture outperforms RATA.SSR on average
and for the flowchart and PaleoSketch data sets. Although no
statistically significant differences were found for the flow-
chart data set (SD , 0.01, p ¼ 0.27) or the PaleoSketch
data set (SD ¼ 0.01, p ¼ 0.07). The exception is the $1
data set where there is a weak statistical difference between
them (SD , 0.01, p ¼ 0.04).

7. DISCUSSION

In this project we use algorithms from an existing machine
learning library. With careful analysis, algorithms were se-
lected and tuned to configure an ensemble recognizer that
is accurate and flexible.

The first step was to explore a wide range of trainable algo-
rithms using a large feature set and three sets of diagram data.
When exploring WEKA we found that there were many algo-
rithms that gave good results. We could not fully explore all of
them; we chose nine that performed well and represented a
variety of different artificial intelligence techniques. Although
this was not an exhaustive exploration of available artificial
intelligence algorithms, it is more comprehensive than has
been reported elsewhere.

The nine selected algorithms were then individually tuned
using three data sets. WEKA offers many tuning attributes for
each algorithm. Computational constraints meant we could
not try combinations of attributes; instead we found the opti-
mal value for each attribute and then combined all optimum
values. Retesting the tuned algorithms showed that most
had improved about 1%. Two algorithms (BN and the LAD
Tree) showed statistically significant improvements; five
performed better but not at a significant level. Although
two (LB and SMO) displayed worse performance in some
tests, for these algorithms we carried the original configura-
tion through to the next phases.

Further tuning of the individual algorithms may be possible
by tuning the combination of settings. We believe these values
are related to the nature of the input data. More data sets and a
lot of computational power are needed for further analysis. An
area worth exploration is ways to dynamically find the best con-
figuration for each data set. In addition it is possible that some
of the algorithms we did not consider would produce similar
results to the nine we used in the second stage of analysis. How-
ever, as we have representative algorithms of the major ap-
proaches and consistently high recognition rates, significant
improvements are unlikely. Another interesting observation is

Table 7. Evaluation results for recognizers ink feature data

FlowChart Data

$1 Data
PaleoSketch

Data

AvgAll Part All Part

RATA.Gesture 99.3 96.4 — 92.5 96.8 97.5
RATA.SSR 98.7 97.1 — 89.9 94.9 96.9
$1 82.8 98.3 — 78.9 89.8 90.3
Rubine 93.3 95.7 — 41.2 46.1 78.4
CALI 85.2 37.5 85.1 42.2 95.0 88.4
PaleoSketch 92.0 50.7 71.4 95.7 98.3 87.2

Note: All indicates all shape classes are used and Part means some are
removed as described. Note CALI on PaleoSketch Part used even less
classes than the others.

RATA.Gesture: A gesture recognizer developed using data mining 363



that many of the better performing algorithms are tree based.
Our feeling is that this is because they are nonparametric so
cope well with real-word data and that because they are weak
learners they combine well in ensembles.

We found the attribute selection algorithms in WEKA had
very limited effect on the accuracy. It is likely this is because
many of the algorithms are already applying attribute selec-
tion type behavior such as a tree structure or a voting mecha-
nism. Comparatively SMO and MLP had better performance
with attribute selection; they apply neither tree structures nor
voting mechanisms. The improvement, however, is not statis-
tically significant. Considering the lengthened training time,
in most situations we believe the application of attribute selec-
tion is not required. However, while recognition time with the
current 114 features is within real-time requirements, if more
features are added, minimizing the number of features to be
calculated would be sensible. Similar results were found in a
study of feature selection for text-shape division in diagrams
(Blagojevic, 2011), in this work no significant improvements
were made with attribute selected classifiers in comparison to
using the full feature set with the same algorithms.

The ensemble proved effective with a statistically signifi-
cant improvement in the recognition rate compared to the
best performing individual algorithm. To build the ensemble
we tried voting and stacking, and we found that the voting al-
gorithms consistently perform better. It may be because the
meta-algorithm used in stacking is not effective; however,
four different meta-algorithms were used and none returned
better result than voting. We speculate the reason is because
the algorithms to be combined are all strong algorithms,
and the errors they generate are not caused by their inability
in a whole area but are due to noise in the data. Thus even
when assigning the best performing algorithm for a section,
misclassification would still occur. Furthermore, trying to
find the best algorithm may result in overfitting. In compari-
son, voting is more robust because it considers the probability
returned by different algorithms which may filter the noise.
As the algorithms we selected are all reasonably accurate,
the probability based voting resulted in improved accuracy.

It is interesting that the combination of the best algorithms
does not produce the best performing ensemble (combination
10 in Table 6). This shows that different algorithms have dif-
ferent strengths. The experiment data shows that BAG, the
worst performing algorithm we used, sometimes can cor-
rectly recognize shapes that the top performing BN cannot.

Although ensembles work well for this problem, they were
not so successful in a previous study for developing text-
shape dividers (Blagojevic, 2011). The main difference be-
tween shape recognition and text-shape division is the nature
of the classes of interest. Shape recognition commonly deals
with many homogeneous classes (we have three to six classes
in our training data set). In contrast, text-shape division has
two classes that have a large within-class variation. Schmie-
der’s (2009) work on evaluating basic shape recognizers
showed that they generally perform better when there are
fewer classes of interest. In the case of our shape recognizers,

possibly the individual algorithms are not able to perform as
well as ensembles due to the number of classes, in compari-
son to text-shape division where individual algorithms per-
form as well as ensembles.

Although there are still areas where further exploration is
possible, we evaluated our best ensemble against four other
recognizers using three data sets. Of particular note is the
performance of RATA.Gesture against $1 on the $1 data set
and RATA.Gesture against PaleoSketch on the PaleoSketch
data set. These recognizers were designed for their respective
data sets, with the characteristics of the data set in mind.
RATA.Gesture performed almost as well as these recognizers
on their associated data sets and outperformed them on the
other data sets.

$1 is a trainable recognizer that has the potential to recog-
nize different types of data. However its recognition approach
ignores much of the rich spatial and temporal information that
is available for digital ink. The data transformations per-
formed by $1 (rotation and scaling) are a weakness of this ap-
proach that is evident in the flowchart data set results where
$1 was the worst performing algorithm.

PaleoSketch has hard coded modules for each shape it can
recognize. Although it is possible to provide more shape types to
cover all possible shapes (Paulson & Hammond, 2008), such
implementation can also lead to a decrease in performance as
the increase in classes provides a higher potential for mistakes
to occur (Rubine, 1991). Furthermore, although the heuristic
based approach is easy to reason and program, we contend
that when the underlying relationships are more complex
they may not be humanly observable.

When measuring the evaluation results we were generous
to the nontrainable recognizers PaleoSketch and CALI. The
advantage of trainable recognizers is evident when one con-
siders the widely varied performance of nontrainable algo-
rithms against the different data sets.

The success of our ensemble recognizer, developed
through the use of a comprehensive feature library and a sys-
tematic analysis of data mining techniques, demonstrates the
value of such an approach. We believe other digital ink recog-
nition problems would benefit from a similar study.

RATA.Gesture’s performance is due not only to the
strength of its algorithms but also to the wide range of fea-
tures that capture the characteristics of the classes more
comprehensively than in the other recognizers. It may be
hard to add these relationships into hard coded or template
matching approaches; however, they can be easily encapsu-
lated into features and used with unmodified training algo-
rithms.

RATA.Gesture has been developed and evaluated in the
context of diagram recognition, as this is our principle area
of interest. RATA.Gesture as presented here is also likely to
produce a very good gesture recognizer for functional ges-
tures in the context of touch screen technology. The tech-
niques may also be useful for the following stages of diagram
recognition such as joining or splitting strokes and discerning
relationships between basic shapes and components.

S.H.-H. Chang et al.364



8. CONCLUSION

In this study we undertook an extensive evaluation of a wide
range of data mining algorithms for recognizing digital ink.
We examined individual algorithms, the use of attribute se-
lection and ensemble strategies using a rich feature set. The
RATA.Gesture recognizer created as a result of this explora-
tion is an ensemble of four algorithms: BN, LB, LMT, and
RF. Our comparative evaluation shows RATA.Gesture to be
more flexible and accurate on average than all other algo-
rithms tested. In addition the results presented for the algo-
rithms we investigated and the evaluation against other recog-
nizers provide some benchmarks against which similar
algorithms can be measured.

ACKNOWLEDGMENTS

Thanks to Associate Professor Eibe Frank for expert advice on using
data mining techniques. This research is partly funded by Microsoft
Research Asia and Royal Society of New Zealand, Marsden Fund.

REFERENCES

Alimoglu, F., & Alpaydin, E. (2001). Combining multiple representations
and classifiers for pen-based handwritten digit recognition. Turkish Jour-
nal of Electrical Engineering and Computer Sciences 9(1), 1–12.

Alvarado, C., & Davis, R. (2001). Resolving ambiguities to create a natural
computer-based sketching environment. Proc. IJCAI-01, pp. 1365–1374.

Apte, A., Vo, V., & Kimura, T.D. (1993). Recognizing multistroke geometric
shapes: an experimental evaluation. Proc. 6th Annual ACM Symp. User
Interface Software and Technology, pp. 121–128.

Basili, R., Serafini, A., & Stellato, A. (2004). Classification of musical genre:
a machine learning approach. 5th Int. Conf. Music Information Retrieval
(ISMIR’04), Barcelona.

Ben-Gal, I. (2007). Bayesian networks. In Encyclopedia of Statistics in Qual-
ity and Reliability (Ruggeri, F., Faltin, F., & Kenett, R., Eds.). Hoboken,
NJ: Wiley.

Blagojevic, R. (2011). Using data mining for digital ink recognition. PhD
Thesis, University of Auckland.

Blagojevic, R., Chang, S.H.-H., & Plimmer, B. (2010). The power of auto-
matic feature selection: Rubine on steroids. Proc. Eurographics 2010,
Sketch Based Interfaces and Modeling, pp. 79–86, Annecy, France.

Blagojevic, R., Plimmer, B., Grundy, J., & Wang, Y. (2008). A data collec-
tion tool for sketched diagrams. Proc. Eurographics 2010, Sketch Based
Interfaces and Modeling, pp. 73–80, Annecy, France.

Breiman, L. (1996). Bagging predictors. Machine Learning 24(2), 123–140.
Breiman, L. (2001). Random forests. Machine Learning 45(1), 5–32.
Calhoun, C., Stahovich, T.F., Kurtoglu, T., & Kara, L.B. (2002). Recogniz-

ing multi-stroke symbols. AAAI Spring Symp., Sketch Understanding, pp.
15–23.

Chang, S.H.-H., Plimmer, B., & Blagojevic, R. (2010). Rata.SSR: data
mining for pertinent stroke recognizers. Proc. Eurographics 2010, Sketch
Based Interfaces and Modeling, pp. 95–102, Annecy, France.

Connell, S.D., Sinha, R.M.K., & Jain, A.K. (2000). Recognition of uncon-
strained on-line Devanagari characters. Proc. 15th ICPR, pp. 368–371.

Dong, L., Frank, E., & Kramer, S. (2005). Ensembles of balanced nested di-
chotomies for multi-class problems. Knowledge Discovery in Databases:
PKDD 2005, pp. 84–95.

Field, M., Gordon, S., Peterson, E., Robinson, R., Stahovich, T., et al. (2009).
The effect of task on classification accuracy: using gesture recognition
techniques in free-sketch recognition. CAD/GRAPHICS 2009, pp. 499–
512.

Fonseca, M.J., Pimentel, C.E., & Jorge, J.A. (2002). CALI: an online scribble
recogniser for calligraphic interfaces. AAAI Spring Symp. Sketch Under-
standing, pp. 51–58. New York: IEEE.

Frank, E., & Kramer, S. (2004). Ensembles of nested dichotomies for multi-class
problems. Proc. 21st Int. Conf. Machine Learning, Banff, AB, Canada.

Freeman, I., & Plimmer, B. (2007). Connector semantics for sketched dia-
gram recognition. AUIC, pp. 71–78, Ballarat, Australia.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression:
a statistical view of boosting. Annals of Statistics 28(2), 337–407.

Fu, L., & Kara, L.B. (2011). From engineering diagrams to engineering mod-
els: visual recognition and applications. Computer-Aided Design 43(3),
278–292.

Gross, M. (1994). Recognizing and interpreting diagrams in design. AVI 94,
pp. 88–94, Bari, Italy.

Hammond, T., Eoff, B., Paulson, B., Wolin, A., Dahmen, K., et al. (2008).
Free-sketch recognition: putting the CHI in sketching. 26th Annual
SIGCHI Conf. Human Factors in Computing Systems (CHI 2008) Works
in Progress, pp. 3027–3032, Florence, Italy.

Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling.
Advances in Neural Information Processing Systems, pp. 507–513,
Denver, CO.

Holmes, G., Pfahringer, B., Kirkby, R., Frank, E., & Hall, M. (2002). Multi-
class alternating decision trees. Machine Learning: ECML 2002,
pp. 105–122.

Johnson, G., Gross, M.D., Hong, J., & Do, E.Y.-L. (2009). Computational
support for sketching in design: a review. Foundations and Trends in
Human–Computer Interaction 2(1), 1–93.

Kara, L.B., & Stahovich, T.F. (2004). Hierarchical parsing and recogni-
tion of handsketched diagrams. UIST ’04, pp. 13–22, Santa Fe, NM.

Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., & Murthy, K.R.K. (2001).
Improvements to Platt’s SMO algorithm for SVM classifier design.
Neural Computation 13(3), 637–649.

Kohavi, R., & John, G.H. (1997). Wrappers for feature subset selection.
Artificial Intelligence 97(1–2), 273–324.

Landwehr, N., Hall, M., & Frank, E. (2005). Logistic model trees. Machine
Learning 59(1–2), 161–205.

LaViola, Jr., J.J., & Zeleznik, R.C. (2004). MathPad2: a system for the
creation and exploration of mathematical sketches. ACM Transactions
in Graphics 23(3), 432–440.

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., & Euler, T. (2006).
YALE: rapid prototyping for complex data mining tasks. 12th ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD
’06), pp. 935–940, New York.

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.
Ouyang, T.Y., & Davis, R. (2009). A visual approach to sketched symbol

recognition. Proc. 21st Int. Joint Conf. Artificial Intelligence,
pp. 1463–1468.

Patel, R., Plimmer, B., Grundy, J., & Ihaka, R. (2007). Ink features for
diagram recognition. Eurographics 2007, 4th Eurographics Workshop
on Sketch-Based Interfaces and Modeling, pp. 131–138, Riverside, CA.

Paulson, B., & Hammond, T. (2008). PaleoSketch: accurate primitive sketch
recognition and beautification. Intelligent User Interfaces (IUI ‘08),
pp. 1–10, New York.

Platt, J. (1999). Fast training of support vector machines using sequential
minimal optimization. Advances in Kernel Methods—Support Vector
Learning, pp. 185–208. Cambridge, MA: MIT Press.

Plimmer, B., & Freeman, I. (2007). A toolkit approach to sketched diagram
recognition. HCI, eWiC, pp. 205–213, Lancaster, UK.

Rubine, D.H. (1991). Specifying gestures by example. Proc. Siggraph ’91,
pp. 329–337.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning Internal
Representations by Error Propagation. Cambridge, MA: MIT Press.

Schmieder, P. (2009). Comparing basic shape classifiers: a platform for
evaluating sketch recognition algorithms. MS Thesis, University of
Auckland.

Schmieder, P., Plimmer, B., & Blagojevic, R. (2009). Automatic evaluation
of sketch recognizers. SBIM ’09, Sketch Based Interfaces and Modelling,
pp. 85–92, New Orleans.

Sezgin, T.M., & Davis, R. (2007). Sketch interpretation using multiscale
models of temporal patterns. IEEE Computer Graphics and Applications
27(1), 28–37.

Sezgin, T.M., Stahovich, T., & Davis, R. (2001). Sketch based interfaces:
early processing for sketch understanding. Proc. 2001 Workshop on
Perceptive User Interfaces, pp. 1–8, Orlando, FL.

Sumner, M., Frank, E., & Hall, M. (2005). Speeding up logistic model tree
induction. 9th European Conf. Principles and Practice of Knowledge
Discovery in Databases, pp. 675–683, Porto, Portugal.

Tay, K.S. (2008). Improving digital ink interpretation through expected type
prediction and dynamic dispatch. Pattern Recognition (ICPR), pp. 1–4.

RATA.Gesture: A gesture recognizer developed using data mining 365



Vogt, T., & Andre, E. (2005). Comparing feature sets for acted and sponta-
neous speech in view of automatic emotion recognition. Multimedia
and Expo (ICME), pp. 474–477.

Willems, D., Niels, R., Gerven, M.v., & Vuurpijl, L. (2009). Iconic and
multi-stroke gesture recognition. Pattern Recognition 42(12), 3303–
3312.

Witten, I.H., & Frank, E. (2005). Data Mining: Practical Machine Learning
Tools and Techniques. San Francisco, CA: Morgan Kaufmann.

Wobbrock, J.O., Wilson, A.D., & Li, Y. (2007). Gestures Without Libraries,
Toolkits or Training: A $1 Recognizer for User Interface Prototypes.
User Interface Software and Technology, pp. 159–168. Newport, RI:
ACM.

Wobbrock, J.O., Wilson, A.D., & Li, Y. (2009). $1 Unistroke Recognizer.
Accessed at http://depts.washington.edu/aimgroup/proj/dollar/

Yu, B., & Cai, S. (2003). A domain-independent system for sketch recogni-
tion. Proc. 1st Int. Conf. Computer Graphics and Interactive Techniques
in Australasia and South East Asia, pp. 141–146, Melbourne, Australia.

Samuel Hsiao-Heng Chang is a PhD candidate in computer
science at the University of Auckland. His research interests
include human–computer interaction and data mining.

Rachel Blagojevic is a Postdoctoral Research Fellow in the
Department of Computer Science at the University of Auck-
land. Her research interests include multimodal interfaces,
gesture recognition, user experience design, and applied
data mining.

Beryl Plimmer researches and teaches human–computer in-
teraction at the University of Auckland. Her particular interest
is in pen and touch interaction. This work includes the cog-
nitive effects of different representations of information
(hand-drawn or formally rendered), interaction design and us-
ability, and recognizers for digital ink and touch gestures.

S.H.-H. Chang et al.366


